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Experimental respirometry shows oxygen uptake rate (OUR) transients which are
not predicted by standard ASM models. These transients were analysed from a detailed
modelling of hybrid respirometers. Structural identifiability analysis of several models
based on local isomorphism transformation approach is carried out. It can be con-
cluded that the knowledge of the OUR does not help positively on an accurate determi-
nation of biokinetic parameters. The measure of dissolved oxygen (DO) is just enough
to calculate the group of identifiable parameters from the models in a calibration
process. The analysis suggests to use only the DO data to avoid the systematic errors
associated to OUR calculations. Furthermore, the existence of OUR transients after a
precise modelling of the hybrid respirometer is deduced. The duration of these tran-
sients are the result of the coupling between the kinetics of the biological process and
the residence time in the respiration chamber of the instrument. An expression for the
duration of these transients is proposed.

KEY WORDS: Respirometry, structural identifiability, oxygen mass transfer,
Monod’s model, wastewaters, oxygen uptake rate

1. Introduction

Respirometry is an experimental technique that allows the determination of
biokinetic parameters to model the dynamics of activated sludge processes and
control the WWTP’s [1–3]. The technique is based on the calculation of the oxy-
gen uptake rate (OUR) deduced from the measurement of the oxygen in the gas
or liquid phase and then, fitting these data to a Monod-like non-linear autono-
mous dynamic model. Thus, a respirometer should be considered basically as a
measuring device conceived for OUR determination in wastewaters.
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For the purposes of the discussion presented in this paper, the errors in
OUR measurement, εR, could be expressed as the absolute value of the differ-
ence between the OUR observed value, Robs, and a model value, Rmod, as:

εR(p, t) = |Robs − Rmod| = εsys(p, t) + εins(·, t) + εrnd(·, t), (1)

where εR(p, t) is the residual error of the OUR, and εsys(p, t) is the system-
atic error attributed to the inadequacies of the model to the observations which
depends on the model structure and on the parameters defined in the model, p.
Additionally, εins(·, t) are the errors associated to instruments, e.g. bias errors,
where the notation (·, t) means here that these kind of errors depend of a num-
ber of unknown factors not associated to the model structure. Finally, εrnd(·, t)
stands for random or stochastic errors which usually follows a known statistical
distribution function with zero statistical expectation, E[εrnd(·, t)] = 0.

Transient responses in OUR measurements are often observed after a sud-
den increase of a biodegradable substrate in the reacting media, which are not
predicted in the context of the IWA activated sludge models. These transients
are observed with independence of the system under study or its character, i.e.
nitrification or heterotrophic substrate oxidation, and cause an undesirable effect
on the accuracy in the determination of the maximum specific biomass growth
and in the Monod’s saturation constants (µmax and KS, respectively) and then,
in the calibration of the mathematical models. Recently, Vanrolleghem et al.
have proposed an interpretation of OUR transients observed in respirometric
experiences based on metabolite dynamics for carbon source degradation at an
intracellular level [4]. In the same paper, two other hypothesis concerning the
non-ideal behaviour of the dissolved oxygen (DO) measuring cell and the mix-
ing regime of the reactors have been checked, concluding that neither of them
gives an adequate explanation of the observations. In order to take into account
this phenomenon, these authors propose to use an empirical first-order expres-
sion to model the observed specific biomass growth, but the proposed equation
introduces a new first-order time constant whose physical meaning is not well
defined.

The aim of this work is to propose an alternative explanation to the
observed transient phenomena in respirometers based on the coupling of some
built-in time constants intrinsic to the instrument. The modelling of a hybrid res-
pirometer is reconsidered and all the time constants of the instrument, revised
to reduce the systematic errors in OUR determination and parameter estimation.
Hence, special attention is paid to time constants such as the oxygen mass trans-
fer coefficient, kLa, and the mean hydraulic residence times of the instrument
with its effect on OUR determination. The methodological procedure is based
on structural identifiability analysis of the parameters defined in the model under
study.
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This paper has been structured in three parts. In the first one the different
methodologies used for structural identifiability analysis of the models based
on local isomorphism transformation are described. The second part is focused
on the relevance of the oxygen mass transfer coefficient on OUR determi-
nation. The third part reviews the hypothesis used in the determination of
OUR using a hybrid respirometer, its connection with transient phenomena
and finally, the feasibility of the simultaneous measurement of OUR and DO.
The coupling between the different built-in characteristic time-constants of the
respirometer as a source of systematic errors of the instrument is considered
there.

2. Structural identifiability analysis methodologies

Several methods have been proposed to perform the structural identifiability
of dynamical system. The proposed methods for these systems are based on Tay-
lor’s series expansion [5,6], or on generating series expansion which amounts to
the Laplace transform method for linear state-space models [7–9], methods based
on local state space isomorphism theorem (also known as the local isomorphism
transformation) [10–12] and finally, to methods derived from differential algebra
[13,14]. None of these methodologies are better than others because the success
of such analysis depends on the structure itself and the complexity of the model,
and then, there are no general rules to apply some methodology to a particu-
lar case. For example, Taylor’s series method could be easily outlined for com-
plex dynamical systems with a big number of observable state variables, but there
are not general methodologies to solve the final set of algebraic equations giv-
ing the identifiable parameters. Conversely, the local isomorphism transformation
gives a general procedure for the analysis of systems with any level of complexity
(together with linear system), but the initial stages of the procedure could give a
set of non-linear algebraic equations which are difficult to solve either analyti-
cally nor computationally.

Two identifiability methodologies have been used in this work both based
on the similarity transformation approach [10]. The first one is an adaptation
of this approach to autonomous non-linear rational models proposed by Evans
et al. [11]. The second methodology has been recently proposed by Chapman
et al. [15,16] as an extension of the local state isomorphism theorem applied
for a particular class of non-linear state-space dynamical system. This last one
is based on the splitting of the linear and the non-linear part of the state-
space model and doing the analysis of both parts separately. We refer the
reader to these references for a detailed description of the methods and theirs
proofs.

Let us consider the first methodology assuming that our system is described
by the following space-state set of ordinary differential equations:
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ẋ(t, p) = f (x(t, p), p),

x(0, p) = x0( p),

y(t, p) = h(x(t, p), p),

(2)

where x(t, p) ∈ Rn is the state variable vector, ẋ(t, p) stands for the time deriv-
ative of x(t, p) and p ∈ Rm is a vector containing the constants and parameters
that would be determined from the observable (measurable) vector y(t, p). The
only restriction applied to functions f (·, ·) and h(·, ·) is that they are rational in
x and p. Let’s consider here the methodology proposed by Evans et al. [11] for
rational uncontrolled systems which is useful in Monod-like models.

Given two parameter vectors p, q ∈ Rm , we say that they are indistinguish-
able if they lead to the same input-output behaviour, h(x(t, p), p) = y(t, p) =
y(t, q) = h(x(t, q), q), which depends only on the structure of the model. If two
parameters p and q are indistinguishable in the model structure represented by
equation (2), then there exists an unique diffeomorphism λ(·) with the following
properties:

H p(λ(x(t, p))) = Hq(x(t, p)), (3a)

λ(x0(q)) = x0( p), (3b)

f (λ(x(t, q)), p) = ∂λ

∂x
(x(t, q)) f (x(t, q), q), (3c)

h(λ(x(t, q)), p) = h(x(t, q), q), (3d)

where H p(·) is a vector field which is used to check the observability rank cri-
terion (ORC) of the system (2) at x0( p), a necessary condition to be hold by
the system [10]. This vector is build using a free combination of the observa-
tion functions h(·, ·) with their successive Lie derivatives along the vector field
f (·, ·) [11]. Equation (3) have been implemented using a symbolic computation
software (Mathematica�, v5.0) to simplify some steps in the identifiability pro-
cess. The algorithm used in this analysis was:

Step 1. Construction of the vector H p(x) = (µ1(x, p), . . ., µn(x, p))T, where
µi (x, p) are functions derived from the components of h(·, ·) and f (·, ·).
Step 2. Check the ORC of the system calculating the Jacobian of H p(x); if

Det
(

∂ H p(x)

∂x

)
x0

�= 0, then the system satisfies the ORC, otherwise return to
step 1.

Step 3. Calculation of λ(·) by inversion of equation (3a): λ(x(t, p)) =
H−1

p (Hq(x(t, p))).

Step 4. Verification of the relation between the vector parameters p and q using
equation (3c).
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Step 5. Additional relations between p and q are derived using equations (3b)
or (3d).
Since h(·) and f (·, ·) are rational functions, the solution of equation (3c) leads
to a non-linear polynomial equation in x(t, ·) from which the relations involv-
ing p and q are obtained equating all their coefficients to zero. Let us apply the
algorithm to a simple case, e.g. monosubstrate consumption with Monod kinet-
ics in extant conditions. After equation (2), this system could be written as:

ẋ1 = − p1

p2

x1

p3 + x1
p4,

x1(0) = p5, (4)

y(t) = 1 − p2

p2
p1

x1

p3 + x1
p4,

where p1 = µmax, p2 = Y, p3 = KS, p4 = X0, and p5 = S0. The state-variable
x1 stands in the model for the substrate concentration, S, and the observable
function, y(t), stands for the exogenous OUR. Applying the algorithm described
above, we have:
Step 1. Since the observable function in system (4) is unique, our first guess for
H p(x, p) is:

Hp(x, p) = 1 − p2

p2
p1

x1

p3 + x1
p4. (5)

Step 2. Knowing that the yield is bounded, p2 < 1, then the system satisfies the
ORC because,

∂ Hp(x, p)

∂x1

∣∣∣∣
x1=p5

= 1 − p2

p2

p1 p3 p4

(p3 + p5)2
�= 0 ∀ p > 0. (6)

Step 3. From equation (3a), λ(x(t, q)) = H−1
p

(
Hq(x(t, p))

)
, then in our case:

λ1 = −q1 p2(1 − q2) p3 q4 x1

q1 p2(1 − q2) q4 x1 − p1 q2(1 − p2) p4 (q3 + x1)
. (7)

Step 4. Equation (3c) gives the polynomial:

A( p, q) x3
1 + B( p, q) x2

1 + C( p, q) x1 + D( p, q) = 0,

where

A( p, q) = q1(1 − q2)q4 [−p1q2(1 − p2)p4 + q1 p2(1 − q2)q4]2 , (8a)

B( p, q) = −2p1(1 − p2)p4q1(1 − q2)q2q3q4 [−p1q2(1 − p2)p4

+ q1 p2(1 − q2)q4] , (8b)
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C( p, q) = −p1(1 − p2)
2 p4q1(1 − q2)q2q3q4 [−p1 p4q2q3 + q1q4 p2 p3] , (8c)

D( p, q) = 0. (8d)

Since x1 is not equal to zero, the polynomial might be zero if and only if
A( p, q) = B( p, q) = C( p, q) = D( p, q) = 0. Equating to zero the terms in
brackets, we have:

p1 p4

p2 p3
= q1q4

q2q3
, (9)

1 − p2

p2
p1 p4 = 1 − q2

q2
q1q4. (10)

Step 5. Considering the precedent expressions and (3b), the following additional
relation is deduced:

p3

p5
= q3

q5
. (11)

In conclusion, the model defined by equation (3) is unidentifiable with three
parameter groups, namely (9)–(11) which correspond, respectively, to:

µmax X0

Y KS
,

1 − Y

Y
µmax X0,

KS

S0
. (12)

After some algebraic manipulations, it can be demonstrated that these groups
are equivalent to those obtained using the Talyor’s series method for structural
identifiability of model (4) (e.g. see equation (4.146) in [3]).

The second methodology for structural identifiability analysis used in this
work is useful for a particular kind of compartmental models which are com-
mon in chemical processes. Let consider that the process under study could be
described by the non-linear state-space model of the form:

ẋ(t, p) = A(p) x(t, p) + B(p) u(t) +
s∑

i=1

fi (x (t, p) , p) νi(p), (13a)

z(t, p) = C(p) x(t, p), (13b)

x(0, p) = 0 (13c)

with the additional properties:
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f i (0, p) = 0,

∂ f i

∂xi
(0, p) = 0,

(14)

where x(t, p) ∈ Rn is the state variable vector, ẋ(t , p) stands for the time derivative
of x(t , p) and p is a vector containing the constants and parameters that would
be determined from the observable (measurable) vector z(t , p). Notice that the
observable magnitudes, z(t , p), are linearly related with the state variables, x(t , p),
but could be non-linearly related with the parameters of the model, p, through
the observation matrix C(p). The input vector, u(t) ∈ Rr , is also considered
bounded and measurable and represents the perturbation applied to the system
from the outwards of its bounds. On the other hand, f i (x (t, p) , p) , i = 1, . . ., s
are the non-linear functions in x and p of the equations system. Finally, A(p),
B(p), C(p) and vi (p) are matrices which define the system and describe the rela-
tionship between the state vector, x(t , p), the perturbation applied to the system,
u(t), and the physically observed response, z(t , p). Thus, after equations (13) and
(14) the system is described by at set of first-order ODE’s that have a linear and
a non-linear component. Moreover, the additional conditions (14) ensure that
the system is initially in a stationary state and there is not contribution of the
non-linear part to the linear one.

Two parameters, p and q, are indistinguishable in the model structure
represented by equation (13) if there exists a function λ(x) = Tx + µ(x), with
T ∈ Rn×n and µ(x) ∈ Rn where the linear part holds:

C(q) T = C(p), (15a)

B(q) = T B(p), (15b)

A(q) T = T A(p) (15c)

together with the non-linear equations:

C(q) · µ(x) = 0, (16a)

∂µ

∂x
(x) · B(p) = 0, (16b)

A(q) · µ(x) +
∑

i

fi (x(q), q) = ∂µ

∂x
(x) · A(p) · x

+
(

T + ∂µ

∂x
(x)

) ∑
i

fi (x(q), q). (16c)
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The system is structurally globally identifiable if T = I and µ(x) = 0, where I is
the identity matrix.

The advantage of this procedure is that if the analysis of the linear part
of the model (equation (15)) gives the parameters which are globally identifi-
ables, the analysis of the non-linear part of this theorem (equation (16)), which
usually is much more complicated, is not needed. Moreover, another advantage
of this method is that equation (15) could be solved simultaneously using com-
puter algebra as is described elsewhere [15,17]. Nevertheless, the disadvantage of
this method is that it is limited to models described by equation (13) subject to
restrictions given by equation (14).

In the next section, it will be used the methodology proposed by Evans
et al. [11] to analyse the simplest model for respirometry accounting for the
oxygen mass transfer to water. Afterwards, it will be used the method proposed
by Chapman et al. [15] to analyse the model describing the hybrid respirometer.

3. Models accounting for oxygen mass transfer

As it was suggested at the introduction, the knowledge of the built-in time
constants of a hybrid respirometer is capital to control or reduce the systematic
errors in the OUR or biokinetic parameters determination. By built-in time con-
stants should be understood the constants associated to the instrument arisen
from dynamic physical processes, e.g. mass transfer processes. These constants
could be coupled each other with chemical rate constants which makes complex
the understanding of the experimental data.

In order to state the problem, let us consider a hybrid respirometer such
as described in [18] (see figure 1). Three time constants could be defined in
such system: the oxygen mass transfer coefficient and the two hydraulic retention
times associated to water flow between the aerobic and the respiration chambers.
Let us analyse before the simplest case of the instrument, where there is no flow
between both chambers, i.e. Q = 0, and the oxygen concentration measurement
is carried out at the aerobic chamber, V1. In this situation, a model account-
ing for the oxygen mass transfer in combination with the biochemical processes
should be considered. Because the magnitude OUR is derived from DO measure-
ments, the structural identifiability analysis of the model could be done consid-
ering each one separately or both together. Thus, these two magnitudes lead to
three different cases to analyse which will be described in detail later.

The model previously analysed and described by equation (4) does not
include the parameters that we would like to measure, i.e. the mass transfer
coefficient, kLa, and the steady state oxygen saturation concentration, C∗. Thus,
let us write the system of ODE in extant conditions considering additionally the
oxygen mass transfer. Also, it might be considered that the OUR is known with
independence of DO measurements, coming back at this point further. Then,
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V1

S1

C1

V2

S2

C2

Q 

Oximeter 1 

Oximeter 2

Air 
pump 

magnetic stirrer 

Substrate injection 

Figure 1. Hybrid respirometer scheme. The aerobic and the respiration chamber are connected with
a pump giving a constant flow rate, Q. Both reactors are considered ideal CSTR. Usually, the DO
is continuously measured along each experiment with the two oximeters, while the OUR is derived
after equation (42b). The substrate injection has been considered as an input in the model given by

equation (43).

under these circumstances, we have:

Ṡ = −µmax

Y
X0

S

KS + S
, S(0) = S0, (17)

Ċ = kLa
(
C∗ − C

) − 1 − Y

Y
µmax X0

S

KS + S
, C(0) = C0, (18)

OU Rexo = Rexo = 1 − Y

Y
µmax X0

S

KS + S
, (19)

where S is the substrate concentration, C the DO concentration and Rexo the
exogenous OUR. Assuming this model, the OUR is calculated from experimen-
tal measurements with:

Rexo = kLa
(
C∗ − C

) − Ċ . (20)

Hence, the systematic errors associated to this magnitude depend on the oxygen
mass transfer coefficient, the oxygen saturation concentration, on the systematic
errors associated to DO measurements and finally, on the numerical procedure
used to calculate the oxygen derivative. Let us demonstrate here the identifiabil-
ity of kLa and C∗ considering that the OUR and the DO are independently
known whichever the experimental technique was used for its determination and
considering that they are free of systematic errors.
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After the notation given by equation (2), the systems (17)–(19) could be
written as:

ẋ1 = − p1

p2
p4

x1

p3 + x1
, x1(0) = p5, (21)

ẋ2 = p6(p7 − x2) − 1 − p2

p2
p1 p4

x1

p3 + x1
, x2(0) = p8, (22)

where the state-variables x1 and x2 are S(t), and C(t), respectively. The parame-
ters are p1 = µmax, p2 = Y , p3 = KS, p4 = X0, p5 = S0, p6 = kLa, p7 = C∗ and
p8 = C0. At this point three cases could be analysed considering such as many
possible ways to define the observable vector h(x, p).

Case I Only OUR. In this case, only the OUR is the observable magnitude of
the system. Let us consider the first step of the algorithm. After equation (2) we
have:

y(t) = h(x, p) = 1 − p2

p2
p1 p4

x1

p3 + x1
, (23)

Hp(x) =
(

p1(1−p2)p4
p2

x1
p3+x1

− p2
1(1−p2)p3 p2

4
p2

2

x1
(p3+x1)

3

)T

. (24)

The second element in vector (24) is the first Lie derivative of the equation
(23) along equations (21) and (22). Note that none of the elements is a function
of x2. Consequently, the rank of the Jacobian matrix of the vector H p(x) will
always be less than the rank of the model because the derivative terms respect x2
are always zero. Therefore, the models (21) and (22) does not satisfy the observ-
able rank condition when the observable function is just given by equation (23)
and then, the model is not observable.

Case II Only DO. Considering that the DO is the single observable magnitude
of the model, we have:

y(t) = h(x, p) = x2, (25)

Hp(x) =
(

x2
p1(1−p2)p4

p2

x1
p3+x1

)T
. (26)

Notice that the dimension of the vector H p(x) must be equal to the num-
ber of state variables in the model, and that it is built using first the observ-
able functions and their Lie derivatives afterwards. It can be demonstrated that
the determinant of the Jacobian matrix of (26) is not null at x(0), and thus, the
model satisfies the ORC in these conditions. Hence, applying steps 3 and 4 of the
algorithm, a non-linear polynomial in x1 and x2 with 16 coefficients is obtained
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(not shown here for brevity) which after their analysis, the following parameter
groups could be identified:

µmax X0

Y KS
,

1 − Y

Y
µmax X0, kLa, C∗. (27)

Additionally, after applying the property (3d) the following groups related with
the initial conditions of equations (17) and (18) also hold:

KS

S0
, C0. (28)

After this analysis it can be concluded that the dissolved oxygen data are just
enough to determine the parameter groups given by equations (27) and (28),
which in turn are the same that the obtained in the precedent model plus the
parameters related with the oxygen transfer. Thus, the manipulation of the raw
data, i.e. the DO readings to calculate the measure of the OUR, could not
be essential in the determination of biokinetic parameters. After all, the same
parameter groups are identifiable using the easiest of the observable magnitudes.

Case III. OUR + DO. In this case, the simultaneous measurement of the OD and
the OUR is considered. Thus, the observable vector is given by:

y(t) = h(x, p) =
(

x2
p1(1−p2)p4

p2

x1
p3+x1

)T
(29)

from which we should build the vector H p(x). Our first guess is to equal both
functions because equation (29) form the basis set from which the vector H p(x)

is built. Notice that equation (26) is the same that equation (29) and then, all
the conclusions deduced in the precedent case about the structural identifiability
of the model are also applicable to this case. Hence, equations (27) and (28) also
hold when the DO and OUR are simultaneously measured.

After the analysis, it is concluded that the DO measurement is compul-
sory in order to obtain the mass transfer coefficient in a biological reactor. This
conclusion, that could be understood intuitively, has been demonstrated here
conclusively. In addition, it could also be demonstrated that if the observation
function, e.g. equation (23), is considered with an endogenous respiration term,
the final conclusion in the three cases do not change. It can be demonstrated that
in cases II and III the endogenous respiration parameter could also be identifi-
able in the model when the DO is used as an observable function.

Finally, let us consider a more general model that the described by equa-
tions (21) and (22), where the biomass growth is considered and the observation



980 J. Navarro-Laboulais et al. / Structural identifiability analysis

functions are the OUR and DO simultaneously. Thus, the model is defined by:

Ṡ = −µmax

Y

S

KS + S
X, S(0) = S0, (30)

Ẋ = µmax
S

KS + S
X − bH X, X (0) = X0, (31)

Ċ = kLa
(
C∗ − C

) − 1 − Y

Y
µmax

S

KS + S
X, C(0) = C0, (32)

where bH is the endogenous rate constant. After the analysis of the precedent
model, it has been noticed that if the observation vector, h(x, p), is built with
the raw state variables of the model, the algorithm could be more efficiently
applied from a computational point of view. Since the OUR is initially consid-
ered as a valid state variable and is not explicitly defined in the precedent model,
let us insert a new differential equation after the definition of the exogenous res-
piration rate:

Rexo = 1 − Y

Y
µmax

S

KS + S
X, (33)

Ṙexo =
(

∂ Rexo

∂S

)
Ṡ +

(
∂ Rexo

∂ X

)
Ẋ

=
[
µmax(Y S (KS + S) − KS X

Y (KS + S)2
− bH

]
Rexo. (34)

After rearranging equations (30)–(32) and (34), the model could be rewritten as:

ẋ1 = − 1
1 − p2

x3, (35a)

ẋ2 = p2

1 − p2
x3 − p4 x2, (35b)

ẋ3 =
(

p1 (p2 x1 (p3 + x1) − p3 x2)

p2(p3 + x1)
2

− p4

)
x3, (35c)

ẋ4 = p5(p6 − x4) − x3 (35d)

with the following initial values vector:

x(0) =
(

p7 p8
1 − p2

p2
p1

p7

p3 + p7
p8 p9

)T

, (36)

where p1 = µmax, p2 = Y , p3 = KS, p4 = bH , p5 = kLa, p6 = C∗, p7 = S0,
p8 = X0 and p9 = C0. Remark that equation (35) and the initial conditions (36)
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are equivalent to equations (30)–(32) and (34) with x1 = S(t), x2 = X (t), x3 =
Rexo(t) and x4 = C(t), respectively. The observation vector is given by its sim-
plest case, that is, the OUR and the DO:

h(x, p) = (
x3 x4

)T
. (37)

The vector field H p(x) is built using equation (37) and its successive Lie
derivatives. Let L f h(x) the Lie derivative of h, the observable vector, along the
vector field f , the right hand terms of equation (35). Considering the first step
in the algorithm described above, let µ1(x, p) = h1(x, p) = x3 and µ2(x, p) =
h2(x, p) = x4 and define:

H p(x, p) = (
µ1 µ2 L f µ1 L f (L f µ1)

)T
. (38)

The Jacobian matrix of this vector has full rank, and then, the model (35) satis-
fies the ORC at x(0). After the inversion of equation (38) and applying (3c), four
non-linear polynomials in x are obtained which must be equal to zero for all x.
One of them satisfies equation (3c) automatically and no information about the
identifiable parameter groups could be derived from it. A second one, gives the
following equation:

p5 p6 − q5q6 + (q5 − p5) x4 = 0. (39)

Because the elements p and x are all of them positive magnitudes, equation (39)
is satisfied if and only if p5 = q5 and p6 = q6. Hence, the identifyability of
kLa and C∗ has been proved when OUR and DO define the observation vector
(37) of the models (35) and (36). The two remaining polynomials are extremely
large summing up to 442 coefficients, but by using some symbolic algebra, they
can be easily reduced. Considering (39) and the reduced polynomials, it is con-
cluded that the following parameter groups are indentifiables in the model given
by equations (35)–(37):

kLa, C∗, µmax, bH , (1 − Y )KS. (40)

Additionally, applying equation (3.b) the following also holds:

KS

S0
,

Y KS

X0
,

1 − Y

Y

S0 X0

KS + S0
, C0. (41)

Notice that if the yield, Y , is known, the system becomes globally structur-
ally identifiable because its input-output structure is unique with a given set of
parameters.

In summary, the simultaneous knowledge of the DO concentration and
the OUR allows the simultaneous determination of the oxygen mass transfer
parameters and the biokinetic parameters. After rearranging the Monod model
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with biomass growth (see equations (30)–(32) and (34)), it has also been demon-
strated that the knowledge of the system could be even better than when extant
conditions are assumed. All the precedent demonstrations have been carried out
considering that the OUR is a known magnitude whichever technique or meth-
odologies were used for its determination. This assumption was just formulated
to do the structural identifiability analysis of the models considering different
observable functions, but it remains as an uncorroborated hypothesis. Thus, let
us consider in the next section the feasibility of the simultaneous determination
of the DO and the OUR in the hybrid respirometry context.

4. Structural identifiability analysis of the hybrid respirometer model

The problem now to be treated, not only should be solved considering a bi-
okinetic model but also, a precise description of the instrumentation to be used.
Let us consider an hybrid respirometer such as described in [18] working in a
LFF+LSF configuration (see figure 1 with Q �= 0). Assuming two control vol-
umes associated to each reactor, the set of ODE’s describing the behaviour of
this system in extant conditions is given by:

Ċ1 = τ−1
1 (C2 − C1) + kLa(C∗ − C1) − R1, C1(0) = C0, (42a)

Ċ2 = τ−1
2 (C1 − C2) − R2, C2(0) = C0, (42b)

Ṡ1 = τ−1
1 (S2 − S1) − 1

1 − Y
R1, S1(0) = S0, (42c)

Ṡ2 = τ−1
2 (S1 − S2) − 1

1 − Y
R2, S2(0) = 0, (42d)

where the indexes stand for the aerobic reactor and the respiration chamber,
respectively. Both reactors are characterized by its mean hydraulic residence time,
τi . Additionally, the OURs in the reactors, Ri , are considered different in mag-
nitude because the difference between the substrate concentration in both cham-
bers. The usual way to obtain the OUR with the respirometer is working out R2
from equation (42b) and considering that this value does not differ significantly
from R1. The problem is, in our opinion, that although R2 could be considered
as the true OUR value calculated for the biological system under study, it is not
possible to apply the initial conditions given by equation (42c) or even assume
that the OUR could be assigned to a system such as given by equations (17)–(19)
basically because R1 �= R2 �= Rexo. This is particularly true at the beginning of
the experiments because the initial substrate concentration in both reactors differ
significantly (see equations (42c) and (42d)).

Since under these circumstances R2 cannot be considered as a state vari-
able of the system (42), it cannot be used for the structural identifiability anal-
ysis of the model. Then, let us analyse the identifiability of the system from
their true accessible state variables, i.e. the oxygen concentrations C1 and C2.
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The model structure itself suggests to try the second methodology for struc-
tural identifiability described in section 2. Consequently, the system (42) should
be rewritten satisfying the conditions imposed by equations (13) and (14) and
considering a particular biokinetic model. Before this, let us think about how a
respirometric experiment is carried out. Once the reactors are filled and the bio-
mass set in extant conditions, an injection of substrate in the aerobic reactor is
done while the DO electrodes are continuously acquiring data. In this context,
the substrate injection could be described more accurately such as a substrate
pulse of duration δ or like an additional flow input in the reactor working dis-
continuously (see figure 1).

Considering this experimental procedure and equations (13) and (14), let us
rewrite the system (42) with the following additional conditions:

1. The substrate consumption is described by a Monod’s kinetics.

2. The system is initially at rest and the substrate concentration is null in
both reactors, S1(0) = S2(0) = 0.

3. The substrate injected in the respirometer is easily biodegradable with a
known COD. This process is considered finite and is carried out in a
time δ small enough but not null.

4. The endogenous respiration in the model is negligible compared with the
exogenous one.

5. The oxygen concentration before the substrate injection, has reached its
saturation value, C0 = C∗.

6. The temperature is constant.

Under these circumstances, the system could be written as follow:

ẋ1 = p1 (x2 − x1) − p3 x1 + 1 − p5

p5

p6 p7

p4 p8
x3 − 1 − p5

p5

p6 p7

p4 p8

x2
3

p8 + x3
,

x1(0) = 0, (43a)

ẋ2 = p2 (x1 − x2) + 1 − p5

p5

p6 p7

p4 p8
x4 − 1 − p5

p5

p6 p7

p4 p8

x2
4

p8 + x4
,

x2(0) = 0, (43b)

ẋ3 = p1 (x4 − x3) + N · U (t) − p6 p7

p4 p8
x3 + p6 p7

p4 p8

x2
3

p8 + x3
, x3(0) = 0, (43c)

ẋ4 = p2 (x3 − x4) − p6 p7

p4 p8
x4 + p6 p7

p4 p8

x2
4

p8 + x4
, x4(0) = 0, (43d)

where x1 and x2 are the state variables related to the DO concentration through
x1 = 1 − C1

/
C∗ and x2 = 1 − C2

/
C∗, while x3 and x4 are the substrate
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concentrations as were previously defined in equations (42c) and (42d). Notice
that all the initial conditions are set to zero and that the substrate injection is
included through the perturbation function U (t). The parameters in the model
are p1 = Q

/
V1 = τ−1

1 , p2 = Q
/

V2 = τ−1
2 , p3 = kLa, p4 = C∗, p5 = Y ,

p6 = µmax, p7 = X0 and p8 = KS. The constant N and the injection-function
U (t) in (43c) are defined by:

N = n0

V1 · δ
, (44)

U (t) = H(t) − H(t − δ), (45)

where n0 is the total substrate COD injected in the respirometer, δ the injection-
time and H(t) is the Heaviside unitary step function. Finally, comparing equa-
tion (43) with equations (13) and (14) we have:

A( p) =

⎛
⎜⎜⎜⎝

−(p1 + p3) p1
1−p5

p5

p6 p7
p4 p8

0

p2 −p2 0 1−p5
p5

p6 p7
p4 p8

0 0 −p1 − p6 p7
p4 p8

p1

0 0 p2 −p2 − p6 p7
p4 p8

⎞
⎟⎟⎟⎠ , (46)

B( p) = (
0 0 N 0

)T
. (47)

Since the observable magnitudes of our system are the oxygen concentration in
both chambers of the respirometer, three different observation matrices could be
defined:

CI( p) = (
1 0 0 0

)
, (48a)

CII( p) = (
0 1 0 0

)
, (48b)

CIII( p) =
(

1 0 0 0
0 1 0 0

)
. (48c)

The first two matrices correspond to single oxygen concentration measurements
in the aerobic and respiration chamber, respectively, while the third matrix
represents the simultaneous measurement of both state variables in a single
experiment.
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The matrix (46) could be simplified considering that p2 and p1 are related
through a known constant, K = V1

/
V2, which relates the volume between the

aerobic and the respiration chambers of the respirometer.

A( p) =

⎛
⎜⎜⎜⎝

−(p1 + p3) p1
1−p5

p5

p6 p7
p4 p8

0

K p1 −K p1 0 1−p5
p5

p6 p7
p4 p8

0 0 −p1 − p6 p7
p4 p8

p1

0 0 K p1 −K p1 − p6 p7
p4 p8

⎞
⎟⎟⎟⎠ . (49)

Solving equation (15) for T with any of the matrices defined by (48), we find
that:

T =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (50)

together with:

p1 = q1, p3 = q3,
p4

1 − p5
= q4

1 − q5
,

p6 p7

p5 p8
= q6q7

q5q8
. (51)

Thus, the parameter groups identifiable in the model are:

τ1, kLa,
C∗

1 − Y
,

µmax X0

Y KS
. (52)

Since C∗ is known because it is equal to the initial saturation oxygen concentra-
tion (see condition no.5 above), the heterotrophic biomass yield, Y , is identifi-
able in the model. Additionally, since τ1 is identifiable and K is known, τ2 could
be derived from these magnitudes. And finally, since kLa is identifiable too, the
OURs R1 and R2 can be derived from model (42) if the last group of parame-
ters in (52) is known. Notice that although the biomass yield could be identified
using this model, the constants µmax, KS and X0, cannot be uncoupled to each
other.

Figure 2 shows simulations of the model (42) with a typical set of bioki-
netic parameters. The DO and the substrate profiles in the two chambers of
the respirometer are shown in figure 2a and b, respectively. Remark the discrep-
ancy between the substrate concentrations at the initial stages of the simulation.
This difference is in the origin of the transient phenomena observed in the OUR
measurements. From DO data (figure 2a), the OUR at the respiration chamber
is calculated using equation (42b) and plotted in figure 2c. Notice a small tran-
sient at initial stages of the substrate injection which is not predicted by the Mo-
nod’s model but by equation (42). The slope of this curve at the origin could be
obtained from both models showing a huge discrepancy between them. From the
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Figure 2. Numerical simulation of model (43) showing the OUR transient resulting from the cou-
pling between the biological kinetics and the reactor hydrodynamics. The parameters selected for the
simulation are typical for an easily biodegradable substrate Q = 48 L/h; V1 = 5 L; V2 = 212 mL;
kL a = 19.4 h−1; C∗ = 8.46 mg/L; Y = 0.79; µmax = 0.25 h−1; KS = 2.31 mg/L; X0 = 820 mg/L;
S0 = 100 mg/L; δinjection = 2.16 s. (a) Dissolved oxygen profiles; the upper and the lower curves
correspond to C1 and C2, respectively. (b) Substrate profiles at the initial stages of the injection.
Remark the concentration discrepancy in the first minute caused by the different residence times
in the aerobic (upper curve) and in the respiration chamber (lower curve). (c) Oxygen uptake rate
(OUR) derived from curves plotted in (a) using equation (42b); the model (43) itself exhibits a tran-
sient not explained by the ASM models. (d) Detail of the OUR transient given by the model (43).
The curves correspond at different flow rates, Q = 48, 38, 28 and 18 L/h, respectively; the rest of

the parameters remain unchanged except S0 = 60 mg/L.

Monod’s standard model (see equations (17)–(19)) the slope of the OUR at t = 0
is given by:

Ṙexo(0) = ∂ Rexo

∂t

∣∣∣∣
t=0

= −1 − Y

Y 2
µ2

max X2
0

KS

(KS + S0)
3

S0. (53)

Since all the biokinetic constants are positive magnitudes, this expression is
always negative. Nevertheless, calculating the slope of the OUR from equation
(42d) we have:

Ṙ2(0) = ∂ R2

∂t

∣∣∣∣
t=0

= 1 − Y

Y
µmax X0

1
KS

τ−1
2 S0, (54)
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which always is positive. Then, again the model (42) explains better the transient
at the beginning of the experiments. In figure 2d the calculated R2 is shown at its
initial stage. The slope of these curves are all positive which agree with the exper-
imental observations [4]. The curves in figure 2d were plotted considering differ-
ent flow rates between the two chambers of the respirometer. Using equation (54)
it can be demonstrated that the slope of the curves at t = 0 is proportional to the
flow rate and then, reducing this value, the slope of these curves decreases too.
A lesser slope implies a longer transient, but as equation (54) suggests, the slope
of these curves are the result of the interaction between the biokinetic process
and the hydraulic set-up of the respirometer. Considering the intersection point
of the asymptotes given by equations (53) and (54) an estimation of the duration
of the transient could be derived:

�t = KS (KS + S0)
2 Y τ2

(KS + S0)
3 Y + K 2

S µmax X0 τ2
∼ KS

S0
τ2. (55)

5. Discussion

From the structural identifiability analysis of the models presented in this
work it can be concluded that the determination of OUR is not compulsory for
the determination of the biokinetic parameters which characterise the biological
wastewater treatment processes. Moreover, it has been demonstrated that if the
ODE’s concerning the DO concentration are included in the mathematical model
describing the dynamics of the respirometer, the measurement of the DO in the
aerobic or in the respiration chamber are quite enough to obtain the biokinetic
parameters of the model after fitting the DO data to the model. Under these cir-
cumstances the oxygen mass transfer coefficient and its saturation concentration
could be calculated and consequently, it might be possible an accurate a posteri-
ori determination of the OUR.

The thesis maintained along this work is that it is not possible to calcu-
late the OUR with a respirometer prior to the knowledge of some parameters
which only are accessible modelling the oxygen transfer process together with the
biological processes, i.e. kLa and C∗ (see equations (20), (42a) or (42b)). From
a theoretical point of view, this problem concerns the convenience or not about
considering the OUR or the DO as the state variables of the dynamical model
that describes the respirometer. Although both magnitudes are related, this rela-
tionship is not symmetrical, nor equivalent. We can calculate the OUR from DO
data but its inverse is not obvious, mainly in hybrid respirometers (see equations
(42a) or (42b)).

If the state variables of a mathematical model change, the structural iden-
tifiability analysis of the model should be repeated in order to confirm its
identifiable parameter groups. Conventionally, the identifiability analysis of acti-
vated sludge models were carried out considering the OUR as the known
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observable magnitude of the system. Here and using different identifiability
methodologies, it has been demonstrated that models which take into account
the oxygen mass transfer and that use the DO as the state variable of the system,
are an adequate representation of the respirometer to determine the biokinetic
and the physical parameters of the model. In our work, we have tried to empha-
size the advantages about working directly with the DO measurements. After all,
it is obvious that using DO the errors associated to this magnitude are lower than
those associated to OUR and consequently, it could have a beneficial effect on the
reduction of the confidence intervals of the calculated biokinetic parameters.

The usual procedure for the determination of these parameters consists first
in the calculation of OUR from DO whatever the hypothesis and simplifications
are assumed in its determination and then, fitting the OUR data to a kinetic
model using a non-linear regression fitting software. Thus, the errors associated
to OUR calculation will be propagated to the calculated parameters affecting in
the accuracy or in the confidence interval of them. Moreover, the structural iden-
tifiability analysis carried out in this work has demonstrated that the parameter
groups theoretically identifiable using the DO as observable state variable are
equal or similar to those identifiable using OUR.

Consequently, the same biokinetic parameters, or its groups, could be cal-
culated using the raw experimental DO data after including in the model the
differential equations associated to the oxygen mass transfer. It is obvious then
that under these circumstances less errors are associated to data and thus, an
improvement on the accuracy of the calculated parameters would be expected.

Furthermore, the problem of the transients observed in respirometers after
a substrate injection has been analysed in this work. The explanation given here
for this phenomenon, mainly in hybrid respirometers, is related to the discrep-
ancy of the initial state in the aerobic and in the respiration chamber. As a result
of this discrepancy, the rates R1 and R2, i.e. the OUR in both chambers, respec-
tively, differ along all the experiment making difficult to interpret correctly the
OUR data in a context where DO data are not included. Moreover, the coupling
between the hydraulic and the biokinetic models has been confirmed deriving
equation (55). In this expression, the mean hydraulic retention time appears cou-
pled with the constants characterizing the Monod’s model. Increasing the com-
plexity of the hydraulic model, e.g. considering transport time-delays between the
respiration and the aerobic chambers, new interactions can appear and longer
transients could be generated. In conclusion, the determination of the biokinet-
ic parameters with a respirometer implies to have a deep knowledge about the
hydrodynamics of the instrument and its possible interaction with the biokinetic
dynamics.

On the other hand, a deep analysis of the systematic errors associated to
the DO measurement using Clark’s electrodes might be necessary in the future.
Remind that for the determination of the OUR it is almost necessary to evalu-
ate the first derivative of the DO concentration respect the time. If we consider
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that immediately after the substrate injection there is an abrupt depletion of the
oxygen concentration in the aerobic chamber, the error in the determination of
the first derivative of the DO at this point could be significant. This could be
specially true if we consider that at the initial stages of the experiment, where
the oxygen concentration changes very fast, the polymer membrane covering the
Clark’s electrode probably is not in a steady state. Thus, a detailed description
of the measurement of DO just after the substrate injection will be necessary to
evaluate the errors on OUR determination at this point.

However, even though the theoretical inconveniences for its determination,
the OUR is still a valuable magnitude that should not be underestimate. Its main
advantage is that provides an intuitive ‘on-sight’ measure of the microbiologi-
cal activity in wastewater processes and then, it could be the basis to propose
different biokinetic reaction mechanisms. What it was under discussion in this
work was the appropriateness of the OUR to calibrate biokinetic models against
other magnitudes such as the DO, not its substitution. Naturally, once the model
has been calibrated and hence, the respirometer constants were accurately deter-
mined, it will be able to have a precise value for the OUR set in a clearly defined
theoretical framework.
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